在线客服
微信扫码
返回顶部
客服

深度学习与TensorFlow 2入门实战

三艺翁斋 三艺翁斋
来源:优课

课程下载

提取码:yy18
检测百度分享链接是否有效: 检测报错
网盘转存下载
本课程供VIP会员免费学习。
下载途径:共10.2GB,网盘转存下载。

课程介绍

本课程适合于深度学习和人工智能方向新手,需要零基础、快速、深入学习人工智能的朋友。

课程目录

├──01.深度学习初见

| ├──课时1 深度学习框架介绍-1.mp4 14.30M

| ├──课时2 深度学习框架介绍-2.mp4 14.43M

| ├──课时3 开发环境安装-1.mp4 14.06M

| └──课时4 开发环境安装-2.mp4 16.89M

├──02.【选看】开发环境全程实录

| ├──课时10 Ubuntu平台实录-pycharm安装.mp4 9.96M

| ├──课时5 win10平台实录-1.mp4 52.14M

| ├──课时6 win10平台实录-2.mp4 38.73M

| ├──课时7 Ubuntu平台实录-cuda安装.mp4 22.28M

| ├──课时8 Ubuntu平台实录-anaconda安装.mp4 15.04M

| └──课时9 Ubuntu平台实录-tensorlow、pytorch安装.mp4 28.57M

├──03.回归问题

| ├──课时11 线性回归-1.mp4 10.34M

| ├──课时12 线性回归-2.mp4 15.23M

| ├──课时13 回归问题实战-1.mp4 16.97M

| ├──课时14 回归问题实战-2.mp4 15.95M

| ├──课时15 手写数字问题-1.mp4 21.65M

| ├──课时16 手写数字问题-2.mp4 11.86M

| ├──课时17 手写数字问题-3.mp4 14.20M

| ├──课时18 手写数字问题初体验-1.mp4 14.49M

| └──课时19 手写数字问题初体验-2.mp4 28.96M

├──04.Tensorflow 2基础操作

| ├──课时20 tensorflow数据类型-1.mp4 16.91M

| ├──课时21 tensorflow数据类型-2.mp4 16.23M

| ├──课时22 创建Tensor-1.mp4 14.90M

| ├──课时23 创建Tensor-2.mp4 14.47M

| ├──课时24 创建Tensor-3.mp4 9.67M

| ├──课时25 索引与切片-1.mp4 26.95M

| ├──课时26 索引与切片-2.mp4 29.09M

| ├──课时27 索引与切片-3.mp4 9.09M

| ├──课时28 索引与切片-4.mp4 35.02M

| ├──课时29 索引与切片-5.mp4 16.62M

| ├──课时30 维度变换-1.mp4 27.74M

| ├──课时31 维度变换-2.mp4 16.88M

| ├──课时32 维度变换-3.mp4 11.28M

| ├──课时33 Broadcasting-1.mp4 28.17M

| ├──课时34 Broadcasting-2.mp4 28.76M

| ├──课时35 数学运算.mp4 18.88M

| ├──课时36 前向传播(张量)-实战-1.mp4 13.41M

| ├──课时37 前向传播(张量)-实战-2.mp4 13.80M

| ├──课时38 前向传播(张量)-实战-3.mp4 13.97M

| └──课时39 前向传播(张量)-实战-4.mp4 15.84M

├──05.tensorflow 2高阶操作

| ├──课时40 合并与分割.mp4 18.40M

| ├──课时41 数据统计.mp4 20.28M

| ├──课时42 张量排序-1.mp4 11.67M

| ├──课时43 张量排序-2.mp4 38.38M

| ├──课时44 填充与复制.mp4 17.45M

| ├──课时45 张量限幅-1.mp4 13.69M

| ├──课时46 张量限幅-2.mp4 17.44M

| ├──课时47 高阶操作-1.mp4 13.17M

| └──课时48 高阶操作-2.mp4 13.57M

├──06 神经网络与全连接层

| ├──课时49 数据加载-1.mp4 13.84M

| ├──课时50 数据加载-2.mp4 10.56M

| ├──课时51 数据加载-3.mp4 12.01M

| ├──课时52 测试(张量)实战.mp4 25.67M

| ├──课时53 全连接层-1.mp4 14.17M

| ├──课时54 全连接层-2.mp4 16.54M

| ├──课时55 输出方式.mp4 16.51M

| ├──课时56 误差计算-1.mp4 13.52M

| ├──课时57 误差计算-2.mp4 13.00M

| └──课时58 误差计算-3.mp4 40.68M

├──07 随机梯度下降

| ├──课时59 梯度下降-简介-1.mp4 25.37M

| ├──课时60 梯度下降-简介-2.mp4 14.45M

| ├──课时61 常见函数的梯度.mp4 93.37kb

| ├──课时62 激活函数及其梯度.mp4 21.40M

| ├──课时63 损失函数及其梯度-1.mp4 10.78M

| ├──课时64 损失函数及其梯度-2.mp4 63.50M

| ├──课时65 单输出感知机梯度.mp4 51.89M

| ├──课时66 多输出感知机梯度.mp4 17.71M

| ├──课时67 链式法则.mp4 18.26M

| ├──课时68 反向传播算法-1.mp4 14.09M

| ├──课时69 反向传播算法-2.mp4 14.13M

| ├──课时70 函数优化实战.mp4 38.96M

| ├──课时71 手写数字问题实战(层)-1.mp4 32.39M

| ├──课时72 手写数字问题实战(层)-2.mp4 13.92M

| ├──课时73 手写数字问题实战(层)-3.mp4 26.51M

| ├──课时74 TensorBoard可视化-1.mp4 15.55M

| └──课时75 TensorBoard可视化-2.mp4 60.20M

├──08.Keras高层接口

| ├──课时76 Keras高层API-1.mp4 12.76M

| ├──课时77 Keras高层API-2.mp4 29.82M

| ├──课时78 Keras高层API-3.mp4 28.32M

| ├──课时79 自定义层或网络-1.mp4 11.90M

| ├──课时80 自定义层或网络-2.mp4 15.11M

| ├──课时81 模型保存与加载.mp4 17.07M

| ├──课时82 CIFAR10自定义网络实战-1.mp4 13.63M

| ├──课时83 CIFAR10自定义网络实战-2.mp4 36.15M

| └──课时84 CIFAR10自定义网络实战-3.mp4 22.94M

├──09.过拟合

| ├──课时 89 动量与学习率.mp4 48.27M

| ├──课时85 过拟合与欠拟合.mp4 58.62M

| ├──课时86 交叉验证-1.mp4 28.18M

| ├──课时87 交叉验证-2.mp4 43.26M

| ├──课时88 Regularization.mp4 41.13M

| └──课时90 Early stopping,Dropout.mp4 57.83M

├──10.卷积神经网络

| ├──课时101 BatchNorm

| | ├──batchnorm.mp4 46.33M

| | └──batchnorm2 .mp4 47.42M

| ├──课时100 经典卷积网络VGG, GoogLeNet, Inception-2.mp4 45.25M

| ├──课时102 ResNet, DenseNet – 1.mp4 17.41M

| ├──课时103 ResNet, DenseNet – 2.mp4 18.37M

| ├──课时104 ResNet实战-1.mp4 13.48M

| ├──课时105 ResNet实战-2.mp4 14.31M

| ├──课时106 ResNet实战-3.mp4 33.47M

| ├──课时107 ResNet实战-4.mp4 62.48M

| ├──课时86 什么是卷积-1.mp4 20.39M

| ├──课时87 什么是卷积-2.mp4 14.99M

| ├──课时88 什么是卷积-3.mp4 41.25M

| ├──课时89 什么是卷积-4.mp4 12.93M

| ├──课时90 卷积神经网络-1.mp4 16.99M

| ├──课时91 卷积神经网络-2.mp4 16.01M

| ├──课时92 卷积神经网络-3.mp4 15.35M

| ├──课时93 卷积神经网络-4.mp4 15.31M

| ├──课时94 池化与采样.mp4 10.78M

| ├──课时95 CIFAR100与VGG13实战-1.mp4 13.45M

| ├──课时96 CIFAR100与VGG13实战-2.mp4 13.87M

| ├──课时97 CIFAR100与VGG13实战-3.mp4 14.24M

| ├──课时98 CIFAR100与VGG13实战-4.mp4 10.59M

| └──课时99 经典卷积网络VGG, GoogLeNet, Inception-1.mp4 20.02M

├──11.循环神经网络RNN

| ├──GRU原理与实战.mp4 44.49M

| ├──lstm-1.mp4 33.94M

| ├──lstm-2.mp4 28.79M

| ├──LSTM实战.mp4 49.56M

| ├──课时108 序列表示方法-1.mp4 15.59M

| ├──课时109 序列表示方法-2.mp4 17.23M

| ├──课时110 循环神经网络层-1.mp4 13.93M

| ├──课时111 循环神经网络层-2.mp4 32.43M

| ├──课时112 RNNCell使用-1.mp4 14.79M

| ├──课时113 RNNCell使用-2.mp4 11.67M

| ├──课时114 RNN与情感分类问题实战-加载IMDB数据集.mp4 13.64M

| ├──课时115 RNN与情感分类问题实战-单层RNN Cell.mp4 14.01M

| ├──课时116 RNN与情感分类问题实战-网络训练.mp4 12.99M

| ├──课时117 RNN与情感分类问题实战-多层RNN Cel.mp4 14.11M

| └──梯度弥散与梯度爆炸.mp4 64.71M

├──12.自编码器Auto-Encoders

| ├──课时119 无监督学习.mp4 14.06M

| ├──课时120 Auto-Encoders原理.mp4 45.04M

| ├──课时121 Auto-Encoders变种.mp4 13.86M

| ├──课时122 Adversarial Auto-Encoders.mp4 12.62M

| ├──课时123 Variational Auto-Encoders引入.mp4 14.20M

| ├──课时124 Reparameterization Trick.mp4 13.78M

| ├──课时125 Variational Auto-Encoders原理.mp4 19.16M

| ├──课时126 Auto-Encoders实战-创建编解码器.mp4 12.65M

| ├──课时127 Auto-Encoders实战-训练.mp4 12.46M

| ├──课时128 Auto-Encoders实战-测试.mp4 14.15M

| ├──课时129 VAE实战-创建网络.mp4 14.20M

| ├──课时130 VAE实战-KL Divergence计算.mp4 47.81M

| └──课时131 VAE实战-训练与测试.mp4 20.54M

├──13.对抗生成网络GAN

| ├──课时132 数据的分布.mp4 12.37M

| ├──课时133 画家的成长历程.mp4 85.53M

| ├──课时134 GAN原理.mp4 18.09M

| ├──课时135 纳什均衡-D.mp4 68.56M

| ├──课时136 纳什均衡-G.mp4 34.57M

| ├──课时137 JS散度的缺陷.mp4 34.46M

| ├──课时138 EM距离.mp4 47.49M

| ├──课时139 WGAN-GP原理.mp4 124.68M

| ├──课时140 GAN实战-.mp4 17.29M

| ├──课时141 GAN实战-2.mp4 27.19M

| ├──课时142 GAN实战-3.mp4 15.12M

| ├──课时143 GAN实战-4.mp4 16.08M

| ├──课时144 GAN实战-5.mp4 12.92M

| ├──课时145 GAN实战-6.mp4 14.34M

| ├──课时146 WGAN实战-1.mp4 16.97M

| └──课时147 WGAN实战-2.mp4 20.74M

├──14.【选看】人工智能发展简史

| ├──课时148 生物神经元结构.mp4 5.87M

| ├──课时149 感知机的提出.mp4 13.56M

| ├──课时150 BP神经网络.mp4 68.15M

| ├──课时151 CNN和LSTM的发明.mp4 65.62M

| ├──课时152 人工智能低谷.mp4 59.45M

| ├──课时153 深度学习的诞生.mp4 14.61M

| └──课时154 深度学习的爆发.mp4 94.11M

├──15.【选看】Numpy实战BP神经网络

| ├──课时155 权值的表示.mp4 35.99M

| ├──课时156 多层感知机的实现.mp4 14.03M

| ├──课时157 BP神经网络前向传播.mp4 14.57M

| ├──课时158 BP神经网络反向传播-1.mp4 14.51M

| ├──课时159 BP神经网络反向传播-.mp4 13.81M

| ├──课时160 BP神经网络反向传播-3.mp4 13.82M

| ├──课时161 多层感知机的训练.mp4 15.98M

| ├──课时162 多层感知机的测试.mp4 19.15M

| └──课时163 实战小结.mp4 12.16M

├──电子书

| ├──花书-深度学习-Eng.pdf 15.91M

| └──花书-中文版.pdf 30.77M

└──软件资料

| ├──课程安装软件-Ubuntu 18.04

| | ├──Anaconda3-2019.03-Linux-x86_64.sh 654.13M

| | ├──cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb 1.55G

| | ├──cudnn-10.0-linux-x64-v7.5.0.56.tgz 412.76M

| | └──pycharm-community-2019.1.1.tar.gz 317.09M

| └──课程安装软件-Win10

| | ├──Anaconda3-2019.03-Windows-x86_64.exe 661.66M

| | ├──cuda_10.0.130_411.31_win10.exe 2.04G

| | ├──cudnn-10.0-windows10-x64-v7.5.0.56 (1).zip 213.78M

| | └──pycharm-community-2019.1.1.exe 231.79M

相邻课程

阅读 下载数 18
三艺翁斋
三艺翁斋
认证课程发布者
关注发布者
三艺翁斋
三艺翁斋
认证课程发布者
课程数
粉丝数
关注发布者
栏目专题
user-avatar
室内设计
创造满足人们物质和精神生活需要的室内环境。
user-avatar
驾驶员考试
驾驶员考试是由公安局车管所举办的资格考试。
user-avatar
PowerPoint
PowerPoint是指微软公司的演示文稿软件。
user-avatar
ASP.NET
ASP.NET微软公司推出的新一代脚本语言。
user-avatar
信用卡
信用卡又叫贷记卡,持卡人可以在规定额度内透支。
名人推荐
user-avatar
董明珠
格力电器股份有限公司董事长。
user-avatar
徐鹤宁
徐鹤宁号称“亚洲销售女神”,是陈安之的弟子
user-avatar
贾长松
著名企业管理系统的咨询顾问。
user-avatar
李彦宏
百度创始人、董事长兼首席执行官。
user-avatar
陈安之
中国著名的成功学演讲大师。